Math 656 « FINAL EXAM ¢ May 9, 2016

1) (10pts) Find all values of cosh~'(2i), and plot them as point in the complex plane (hint: convert to a quadratic
equation for e°)
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In the last step we used the fact that ln(\/g — 2) = —ln(\/g + 2) because (\/g — 2)(\/5 + 2) =1
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2) (24pts) Describe all singularities of the integrand inside the integration contour, and calculate each integral (use any
method you like). Each integration contour is a circle of specified radius
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(a) Two poles of order 2 inside integraiton contour; use the standard pole formula for residues
(the answer will be be zero since the integrand is even):
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(b) Two simple poles at z = i% and a pole of order 2 atz =0

(the answer has to be zero since the integrand is even):
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3) (10pts) Find the first two dominant terms in the series expansion of f(z) = 5

2* (e -1)

result to classify the singularity at z=0. What is the residue of this function at z=0? What would be the domain of
convergence of the corresponding full series? Finally, classify the singularity of this function at z=w, as well.

near z = 0, and use your
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e Residue at z=0 (which is a simplepole): [C | =——

¢ Domain of convergence: closest singulatiry is at z=27: |converges in 0 <|z | <27

e Singularity at z=oo: |cluster point, since it is a limit of simple poles z, =2zn

. . 1 .
Note that is 1s impossible to find a series around W, = 0 where W = —, even though many of you tried:
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This result is true, but there is no way to continue after this step: this cannot be transformed into a

power series in W or 1/w
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4) (10pts) Sketch the domain of convergence of the Laurent series z K , and write down

| e |<1(2i+z)2k

the expression for its sum. What are the singularities of this sum (which represents the analytic extension of this

series)? Hint: this is a very straightforward problem: notice a combination of standard series of familiar elementary
functions.

This is a Laurent series centered at zo = —2i, so the series converges in some annulus (“ring”) 0<r <|z—-z | <R

Now, the first term is a geometric series, and the second term is a Taylor series of an exponential function:
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This sum has an essential singularity at zo=—2i, and a pole at z-z, = €2, so the convergence annulus of its series

expansion is |0 <| Z +2i | < e’ (this can also be determined using the ratio test)

5) (16pts) Calculate two of the following integrals. Explain each step briefly but fully. If you choose (c), use an “indented”
contour. Make sure to obtain a real answer in each problem!
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where z, , = T; note that only z, = T\/_ is inside the unit circle, therefore:
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} Three simple poles in upper half-plane:
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Closing via semi-circle C; in the upper half-plane:
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The integral over C; can be shown to approach zero as R — oo, by the Jordan's Lemma:
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Cauchy Principal Value

Consider a semi-circular contour closed in the upper half-plane and indented at the origin:
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Taking the limit £ — 0 and R — o (note that Jordan's Lemma is not required here), we obtain
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6) (10pts) Use Rouche’s Theorem to find an annulus/ring with integer radii, n < |z| < n+1 (n € Z+), containing all roots
of polynomial f (z) = z3+ z?+ 40

Trying a couple values of n easilly yields the result: 3 <|z| <4



7)

You may drop one problem out of the last three

(10pts) Use the Argument Principle to find the number of roots of f (z) = 2i + z + z* lying in the first quadrant. To do
this, sketch the mapping of the relevant quarter-circular sector boundary (it's quite straightforward).

Consider P(z)=2i+2z+2" as a map from (x,y) to (u,v)

Map the three boundaries of the first quadrant; only the map of the imaginary axis requires a little thought:

P(z _ iy) i+ 2iy+yt sutiv = u=+y* (monotonic:'ally in'creasinfg)
vV =2+2y (monotonically increasing)

Winding number of w = P(Z)|ZEc around W = 0 equals one => One root in the 1" quadrant

w=P(z)
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8) (10pts) What is the image of the domain {Re(z) € {0, %}, Im(z) € [O, + oo]}under the mapping W =sin z ?

Hint: consider separately the map of each boundary, and the map of any point or curve within this domain. You may
use the Cartesian decomposition sin Z = sin Xcosh y +1i cos Xsinh Y . Note that a map does not preserve angles (is

not conformal) wherever f '(Z) =0.

This semi-infinite strip is mapped into entire first quadrant (easily seen by mapping the two corners and the
three boundaries:

1. z=iy: sin(iy)=isinhy = Left vertical edge maps to infinite vertical line

2. 2= % +1y: sin (% + iyj = cos(iy) =cosh y = Right vertical edge maps to horizontal line [1, +o0)

3. z=XEe€ {O, %} = sinx €[0, 1] Real segement maps to real segment

Note that the right angle at z=n/2 is doubled, since this point is a simple zero of this function

—

9) (10pts) Suppose f(z) and g(z) are entire functions, and that |f(z)| < 10 |g(z)| in the entire complex plane. Is it true that
f(z) = Ag(z) for all z, where 1 is a constant? If true, explain carefully, using any theorem learned in this course. If not
true, give a counterexample. Note that f(z) and g(z) may have zeros in the complex plane.

This statement is true, and immediately follows from the Liouville Theorem for h (Z) =

However, one has to prove that h(z) is an entire function, despite the fact that g (z) may have zeros.
Since | f(z)|<10]g(z)| near each zero, f (z) has a zero of orden n > m for each zero of order m of function g(z).
Thus, all zeros of g (z) are also zeros of f (z), and are removable singularities of h(z). Thus, the Liouville theorem

can be applied to h(z), and since |h(z)[<10 (bounded!), we have h(z) =const =1 = f(z)=1g(z)



